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1 Question 1

Table 1: Question1 Dataset

(a) Considering Naive Bayes model, the features are conditionally independent. And because of the

binary features, we can use Bernoulli distribution for the class-conditional probability

p(®x |y = c) =
2∏
j=1

Ber(xj |µjc)

Use Bayes rules, the posterior probability

p(y = c | ®x) =
P(®x, y = c)

P(®x)

=
P(y = c)

P(®x)
· p(®x |y = c)

=
P(y = c)

P(®x)
·

2∏
j=1

Ber(xj |µjc)

(b) For instance 1, ®x = {x1, x2} = {0,0}

P(®x, y = 0) = P(y = 0) · Ber(x1 |µ10) · Ber(x2 |µ20) =
3
8
× 0 ×

2
3
= 0
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P(®x, y = 1) = P(y = 1) · Ber(x1 |µ11) · Ber(x2 |µ21) =
5
8
×

4
5
×

2
5
=

1
5

∴ P(®x) = 0 +
1
5
=

1
5

p(y = 0| ®x) =
P(®x, y = 0)

P(®x)
=

0
1/5
= 0

p(y = 1| ®x) =
P(®x, y = 1)

P(®x)
=

1/5
1/5
= 1

For instance 7, ®x = {x1, x2} = {1,1}

P(®x, y = 0) = P(y = 0) · P(®x |y = 0) = P(y = 0) · Ber(x1 |µ10) · Ber(x2 |µ20) =
3
8
× 1 ×

1
3
=

1
8

P(®x, y = 1) = P(y = 1) · Ber(x1 |µ11) · Ber(x2 |µ21) =
5
8
×

1
5
×

3
5
=

3
40

∴ P(®x) =
1
8
+

3
40
=

1
5

p(y = 0| ®x) =
P(®x, y = 0)

P(®x)
=

1/8
1/5
=

5
8

p(y = 1| ®x) =
P(®x, y = 1)

P(®x)
=

3/40
1/5

=
3
8

2 Question 2

If all classes shares the same covariance matrix

P(y = c | ®x) ∝ P(y = c) · P(®x |y)

∝ πc · e−
( ®x− ®µc )

T ·Σ−1 ·( ®x− ®µc )
2

= πc · e−
1
2 ®x

T Σ−1 ®x · e
1
2 ®µc

T
Σ−1 ®x− 1

2 ®µc
T
Σ−1 ®µc

∝ e ®µc
T
Σ−1 ®x− 1

2 ®µc
T
Σ−1 ®µc+logπc

Let ®wc
T
= ®µc

T
Σ−1 and bc = − 1

2 ®µc
T
Σ−1 ®µc + logπc. Then

P(y = c | ®x) ∝ e ®wc
T
®x+bc
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According to the above analysis, if all classes shares the same covariance matrix, the GDA goes back to

softmax regression. And if let C = 2, we can get the logistic regression model.

Table 2: Compare GDA and Logistic Regression

Comparision Logistic Regression GDA

Distribution of Data P(y = c | ®x, ®w) = Ber(y |σ( ®wT ®x)).

It’s a weaker assumption but per-

forms more robust. It’s a simpler and

lower-lever model.

P(®x |y = c) = N(®x | ®µ, ®Σ). It is a

stronger assumption but may not be

reliable when encountering some ex-

treme situations.

Amount of Data It requires more data so it’s harder for

training.

It requires less data to achieve a cer-

tain level of performance than logis-

tic regression. It’s easier to learn pa-

rameters.

3 Question 3

The logistic regression is a kind of dicriminative model and the GDA is a kind of generative model.

When we come to the topic of classification, we have other kinds of classifiers. For example, on the one hand,

Naive Bayes classifier, Bayesian networks, LDA and etc. belong to generative model. On the other hand,

SVM, Softmax, decision tree, neural network. The comparision of generative classifiers and discriminative

classifiers is as follows:

Table 3: Compare Generative Classifier and Discriminative Classifier

Comparision Generative Classifier Discriminative Classifier

Parameter Estimation Generative classifier finds the best

class the object belongs to by max-

imizing the joint probability P(®x, y)

using P(y) and P(®x |y). It’s easier

to do this because it has closed-form

formulae for MLE

Discriminative classifier directly do

classificaton by maxizing the condi-

tional probabilityP(y | ®x). More com-

plex to do parameter estimation be-

cause it requires gradient descent to

compute MLE

Missing Data No principled way to handle EM algorithm

Features Transform Hard because the new feature are cor-

related in complex ways

Easy. ®x → Φ(®x). Used in deep

learning.

Semi-supervised

Learning

Can use unlabeled data to help with

training

Harder

3



4 Question 4

Figure 1: The relationship between training set size and error

The curve(ii) represents the training error. On the one hand, this is because that generally the test error
will be larger than training error. On the other hand, when the training data set is small, the data set cannot

well illustrate the nature of the whole data. It’s easy to train a model with zero training error but very high

test error. When gradually increasing the trainning set, the training error would increase from zero to a stable

value and the test error would decrease from a large value to the stable value.

The gap is called generalization gap. According to VC Theorem, I use m to represent the sample size

and d = VC(H) to represent the model complexity. The gap between training error ε̂(h) and test error ε(h)

satisfies an inequality relation as follows:

With probability at least 1 − δ, we have that all for h ∈ H

|ε(h) − ε̂(h)| ≤ O

(√
d
m

log
m
d
+

1
m

log
1
δ

)

Figure 2: The relationship between model capacity and error

In general, we have m
d > e so in the interval [e,+∞]
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• Fixing m. d increases → m
d decreases → d

m logm
d increases → O(·) increases → generalization

gap widens. i.e. When increasing the model complexity, the geralization gap would widen. Their

relationship can be further illustrated by figure 2. As we see, the gap between green line and blue line
is getting bigger and bigger as the model capacity increases.

• Fixing d. m increases→ m
d increases→ d

m logm
d decreases→ O(·) decreases→ generalization gap

narrows. i.e. The generalization gap narrows as the sample size becomes larger. And this is already

shown in figure 1. Hence, more data implies better performance of learning an algorithm.
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