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1 Question 1

According to the known condition, make x0 = 1 i.e. add a column with 1 in matrix X:
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The OLS solution:

Ŵ = (XT X)−1 · XT · y
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2 Question 2

Figure 1: Question2 Linear Regression Results
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1) where λ = 10 —> (d)

Explanation If we give the linear regression line an equation y = k x + b then the ω0 is b and the ω1 is k.

The (c) line has lower slope because the 1 · ω2
1 will make slope smaller. However too big λ = 10 will cause

nearly no slope in the (b) line. If we add w2
0 to the regularization, it causes both b and k decay. Compared

to (1), the answer would be (a) line which has smaller b. Obviously, (4) will match (d) line because both b

and k are small and the line is underfitting.
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3 Question 3

Like Question 1, writing down the matrix X and y:

X =
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Use batch gradient descent algorithm, get the parameter ω freshing formula

ωj = ωj + α

4∑
i=1
[yi − σ(ω0 + ω1x1 + ω2x2)] · xi, j

Suppose ω0 = −2, ω1 = 1 and ω2 = 1 initially and α = 0.1. So we can calculate

ω0 = −2 + 0.1 · {[0 − σ(−2 + 0 + 0)] · 1+

[0 − σ(−2 + 0 + 1)] · 1+

[0 − σ(−2 + 1 + 0)] · 1+

[1 − σ(−2 + 1 + 1)] · 1} = −2.02

Similarly, we can calculated

ω1 = 1.02 ω2 = 1.02

Use sigmoid function

ŷ1 = σ(ω0 + ω1 · 0 + ω2 · 0) = 0.12 having 12% chance in class 1 (belong to class 0)

ŷ2 = σ(ω0 + ω1 · 0 + ω2 · 1) = 0.27 having 27% chance in class 1 (belong to class 0)

ŷ3 = σ(ω0 + ω1 · 1 + ω2 · 0) = 0.27 having 27% chance in class 1 (belong to class 0)

ŷ4 = σ(ω0 + ω1 · 1 + ω2 · 1) = 0.51 having 51% chance in class 1 (belong to class 1)

The class distribution is [0, 0, 0, 1] so the training error = 0

4 Question 4

4.1 use raw features

If we use only raw features to classify, we would find that it’s a linear-inseparable question. This is

because that we cannot find a surface to distinguish the positive and the negative. I use numpy to help me

calculate the batch gradient descent (BGD) process.
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X4 = np.array ([[1,0,0],

[1,0,1],

[1,1,0],

[1,1,1]])

y4 = np.array ([1,0,0,1])

w4 = np.array ([-2,1,1])

a = 0.1

for i in range (100):

w4 = w4 + 0.1 * (y4 - sc.expit(w4.dot(X4.T))).dot(X4)

print(w4) # weight

print(sc.expit(w4.dot(X4.T))) # y_predict

No matter how many iterations I run, the minimum error only achieves 1. After 100 iterations,

weight = [ -0.3395675 0.28609699 0.28609699]

y_predict = [0.41591454 0.48663556 0.48663556 0.55789577]

After 1,000 iterations,

weight = [ -2.23876505e-07 1.88743639e-07 1.88743639e-07]

y_predict = [0.49999994 0.49999999 0.49999999 0.50000004]

4.2 add an additional feature

However, if we add an additional feature, it’s equivalent to that projecting features from 2D to 3D.

This makes the problem become linear-separable. Using the following code, after doing approximately 130

iterations, we can get a model having 0 trainning error (minimum training error).

X5 = np.array ([[1,0,0, 0],

[1,0,1, 0],

[1,1,0, 0],

[1,1,1, 1]])

y5 = np.array ([1,0,0,1])

w5 = np.array([-2,1,1, 1])

a = 0.1

for i in range (130):

w5 = w5 + 0.1 * (y5 - sc.expit(w5.dot(X5.T))).dot(X5)

print(w5)

print(sc.expit(w5.dot(X5.T)))

The weight and y_predict after 130 iterations,

weight = [ 0.0819811 -0.97091908 -0.97091908 3.39687673]

y_predict = [0.5204838 0.29132904 0.29132904 0.82303106]
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5 Question 5

ω1 = ω1 + α

N∑
i=1
[yi − σ(ω

T xi)]xi,1

If predicted value σ(ωT xi) is smaller than the actual value yi, there is reason to increase wj . The

increment is proportional to xi,1. If predicted value σ(ωT xi) is larger than the actual value yi, there is reason

to decrease wj . The decrement is proportional to xi,1.

However, the question has already supposed the feature x1 is binary whose value is unbalanced. The

zero value of x1 keeps the w1 from learning features from the example with LABEL 0. Otherwise, the ω1

would adjust according to both two classes. Therefore, this rule will force the model to fit example with a

small number of training examples with LABEL 1 ( special feature in training set ). This causes overfitting.

ω1 = ω1 + α

[
−λω1 +

N∑
i=1
[yi − σ(ω

T xi)]xi,1

]
Then adding the regularization constant is able to reduce overfitting. It helps the model not to learn too

much from the training set. In the update rule, the −λω1 is independent, not influenced by the feature x1.
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