
The Final Report of a Recommendation System for Movielens

YANG Rongfeng, LAU Kwan Yuen, WANG Xueying, LAI Wendi, Li Yunli
MSBD 5001, Group FMVP, BDT, HKUST

Abstract

With the rapid development of machine learning and related
technologies in the past few years, many problems that are
difficult to solve with traditional algorithm ideas have made
breakthroughs. Among them, the fields of recommendation
system have very large development and obtain rich research
results with the introduction of the neutral network. In this
paper, we focus on building a recommendation system for
movies by exploring different solutions including neutral
network models. With constant parameter modification and
model improvement, we analyze our built system and discuss
more specific details for possible exploration.

Key Words: Neutral Network, DeepFM, Recommenda-
tion System

1 Introduction

1.1 Background

The recommendation system is one of the most widely re-
searched and most important applications for machine learn-
ing. The recommendation system helps users to deal with
information overload and provide personalized recommenda-
tions, content, and services to them. The task of recommen-
dation system is to link users to information, on the one hand
to help users find information that is valuable to them, and on
the other hand to present information to user who might be
interested in it, to achieve a win-win situation for information
consumers and information producers.

In the recommendation algorithm, the input parameters are
various attributes and features of the user. After being pro-
cessed by the recommendation algorithm [1], a list of items
sorted according to the user’s preference is returned. Com-
mon recommendation algorithms can be roughly divided into
the following types: popularity-based algorithm, collabora-
tive filtering algorithm, content-based algorithm, model-based
algorithm and hybrid algorithm. In our project, we apply a

user-based collaborative filtering approach to obtain the input
of next module.

In addition, another core question in recommendation sys-
tem is the prediction of click-through rate. The CTR estimate
is a prediction of each user’s clicks, predicting whether a
user will click on a collection of contents or not. With the
rapid development of deep learning, some classic methods
and innovative directions have emerged in the research field
of predicting user click-through rate.

1.2 Project Description

Our team proposes to build a recommendation system using
data set provided by Movielens. Based on the data set, we
train the neutral network model to predict movies that the
user prefers by analyzing the previous data and then we rec-
ommend them to the user. We also build a web interface to
demonstrate our work. The article is organized as follows:
we first introduce the background of project and describe
the project goal under individual contributions of each group
member (§ 1). Then at the (§ 2), we discuss the related work
to our project. We describe our work on the phase of data
preparation (§ 3) and discuss the architecture of our recom-
mendation system based on it (§ 4). In addition, we show
the detailed experimental process with model evaluation and
obtained experimental results (§ 5). Based on the above work,
finally we do a briefly analysis and make a conclusion.

The core problem we explore is selecting several films to
recommend to the users according to the movies they have
seen. We extract features from the user contributed content
including tags, ratings, and textual reviews. Each movie can
be described as a feature vector. We propose a solution frame-
work with two independent modules called recalling module
and ranking module. When recommending movies to a partic-
ular visitor, recalling module first filters out a majority of less
relevant movies from the candidate list. After that, ranking
module will sort out movies with high rank from the remain-
ing candidates for the visitor.

1

2 Related Work

2.1 Collaborative Filtering Recommendation
Collaborative Filtering Recommendation is one of the earliest
and most successful technologies in the recommendation sys-
tem. Collaborative filtering is based on the assumption that it
is a good way for a user to find content that he is really inter-
ested in by first finding other users with similar interests to the
user and then recommending the content they are interested
in to the user [7]. It generally adopts the nearest neighbor
method, calculating the distance between users by using the
user’s historical preference information. Then, it uses the
weighted value of the product evaluations of the target user’s
nearest neighbors to predict the preference of the target user
for a specific product [5]. Finally, it recommends products for
the target user based on the predicted preferences.

Figure 1: The collaborative filtering process [5]

The CF algorithm is divided into two types, one is user-
based, and the other is model-based, also called item-based.
The basic idea of user-based one is to use the nearest neighbor
(neighbor-neighbor) algorithm to find a set of neighbors of a
user, and then recommend the items that those neighbors like
to the user. The users of this set have similar preferences to
the user, and the algorithm predicts the user according to the
preference of the neighbor. The basic idea of item-based[5] is
to calculate the similarity between items based on historical
preference data of all users in advance, and then recommend
the items similar to those that the user likes to the user.

Whether it is based on users or based on items, the key is
to establish an association matrix [7].

2.2 DNN in CTR
Deep neural networks (DNN) have shined in recent years
in the fields of images, speech, and natural languages. Espe-
cially in image classification, speech recognition, and machine
translation, DNN has surpassed humans, and its accuracy has
reached the level of commercial application. However, the ap-
plication of DNN in CTR’s estimation of this scenario is still
being explored. Data in the fields of images [9], languages,
and natural languages are generally continuous, and there are
certain structures between parts. For example, there is a close

connection between parts of the image and its surroundings;
there is a strong correlation between speech and text. How-
ever, the data estimated by the CTR, as described earlier, are
very discrete. Many of the relationships between the features
are the result of our ranking, and they are not interconnected.
The biggest problem is how to construct a matrix like an
image for a sample, which can have local connections and
structures.

2.3 DeepFM

The focus of CTR is on learning combination characteris-
tics. Combined features include second-order, third-order, and
even higher-order ones. The higher the order, the more com-
plex and difficult it is to learn. Before DeepFM [6], a variety
of models including FM have been proposed and applied to
solve the problem of constructing CTR and recommendation
systems.

However, these models generally have two problems. The
first problem is the bias between low-order and high-order
combined features. We cannot extract both types of features
at the same time. The second is the need for professional
domain knowledge to do feature engineering. DeepFM suc-
cessfully solved these two problems, and made some improve-
ments.The core idea of DeepFM is:

(1) There is no need to pre-train the FM to get the hidden
vector.

(2) FM Component + Deep Component. No artificial fea-
ture engineering is required. FM extracts low-order com-
bined features, and Deep extracts high-order combined
features.

(3) Ability to learn low-order and high-order combined fea-
tures simultaneously.

(4) The FM module and the Deep module share the feature
embedding section for faster training and more accurate
training and learning.

DeepFM includes two parts, FM and DNN [6] [9], so the
final output of the model is also composed of these two parts:

Y = sigmoid(YFM +YDNN) (1)

The FM module enables the modeling of 1st-order and
2nd-order combined features. The role of DNN is to construct
high-order combined features. The black lines in the network
are fully connected layers. The parameters need to be learned
by the neural network.

2

Figure 2: Wide&deep architecture of DeepFM. The wide
and deep component share the same input raw feature vector,
which enables DeepFM to learn low- and high-order feature
interactions simultaneously from the input raw features [6]

3 Data Preparation

3.1 Dataset
We use the dataset ml-latest-small which is provided
by the Movielens to do our project. The dataset
describes 5-star rating and free-text tagging activ-
ity. It contains 100,836 ratings and 3,683 tag appli-
cations across 9,742 movies. These data were cre-
ated by 610 users between March 29, 1996 and Septem-
ber 24, 2018. This dataset was generated on Septem-
ber 26, 2018.

Users were selected at random for inclusion. All selected
users had rated at least 20 movies. No demographic informa-
tion is included. Each user is represented by an id, and no
other information is provided. The data are contained in six
files:

• links.csv Containing identifiers that can be used to link
to other sources of movie data such as imdb and the
moviedb.
Data format: movieId, imdbId, tmdbId.

• movies.csv Containing the movie information.
Data format: movieId, title, genres.

• rating.csv Containing rating data by users.
Data format: userId, movieId, rating,
timestamp.

• tags.csv Containing the tags information that users use
to describe movies.
Data format: userId, movieId, tag, timestamp.

3.2 Data Preprocessing
In the original dataset, the data of movies, rating and tags
could be used in the training directly with regulated data
format. We extract features from the user contributed content

including tags, ratings, and textual reviews. In addition, each
movie can be described as a feature vector. It’s a kind of dense
matrix like:

scores =


s1,1 s1,2 . . . s1,n
s2,1 s2,2 . . . s2,n

...
...

. . .
...

sm,1 sm,2 . . . sm,n



where n = feature number, m = movies number

We used it to train a model to find the movies with close
relevance. We also did PCA (Principal Component1Analysis)
for the dataset so we can extract the key features further and
clear away distractions.

4 System Architecture

We propose a solution framework with two independent mod-
ules, which are the recalling module and ranking module.
When recommending movies to a particular visitor, recalling
module first filters out a majority of less relevant movies from
the candidate list. In addition, we also need to consider the
user cold start problem.After that, ranking module will sort
out movies with high rank from the remaining candidates for
the visitor.

Figure 3: System Architecture

4.1 The recalling module
In recalling module, we apply a user-based collaborative fil-
tering approach to obtain the input of ranking module. Specif-
ically, we first find out users, who have similar preferences
about movie to the visitor’s, based on a rating matrix calcu-
lated from previous rating records. After that, we can obtain
a list of movies, which those users having similar preferences
have watched before, as the input of ranking module.

3

Therefore, The core algorithm of this part is a user-
based collaborative filtering. Simply, user-based CF algorithm
means when a user A needs personalized recommendation,
he can first find a user group G that is similar to his interest,
and then recommend to A items that G likes, which A has not
heard of. We take the implementation process into two steps:

(1) Find a set of users with similar interests to the target
user;

(2) Find movies liked by this set of users as well as not heard
by the target user before and recommend those movies
to the target user.

4.1.1 Discovery of similar users

The similarity between two users is usually calculated using
Jaccard’s formula or cosine similarity. Let N(u) be the set of
movies that user u likes, and N(v) be the set of movies that
user v likes, then the similarity between u and v is

Jaccard′s f ormula :

Wuv =
|N(u)∩N(v)|
|N(u)∪N(v)|

(2)

Cosine similarity :

Wuv =
|N(u)∩N(v)|√
|N(u)×N(v)|

(3)

The specific approach is that calculating the similarity be-
tween all users, we first needs to establish a "movie-user"
correspondence table, and then for each movie, add 1 to the
same movie between two users who both like it. Finally, the
value of the cosine similarity or Jaccard’s formula is used to
calculate the similarity between the users, so that users who
are more similar to the target user’s interests can be found
intuitively.

4.1.2 Movie candidates

First, we need to find the K users that are most similar to
the target user u from the matrix, and use the set S(u,K) to
extract all the movies that the user likes in S and remove
the movies that u has liked. For each candidate movie i, the
degree to which user u is interested in it is calculated using
the following formula:

p(u, i) = ∑
v∈S(u,K)∩N(i)

wuv× rvi (4)

Where rvi represents the degree of user v’s preference for i.
In our project, because the user needs to give a rating, so we
need to substitute the user rating.

Finally, the movies are sorted by score. Take the first few
high-scoring movies to get the result of movie candidates.

Figure 4: Ranking module

4.2 The ranking module

For our ranking module, we have implemented three different
models. Firstly, we call naive ranking model. Briefly, we
first calculate the average genome score over movies which
the user has watched before. Then, we adopt the euclidean
distance between the average score and the candidate movie’s
score as the criteria for sorting. We finally sort out movies
having the largest weigthed sum of overall rating and the
aforementioned distance.

Next, we apply a deep learning method in the second model.
Specifically, we take the user’s historical rating record and
the genome score of a candidate movie as the input of our
network. Then, those features are fed to a two-branch residual
neural network to obtain a predicted rating. It is notable that
user’s features are difficult to extract, since we have only the
historical rating record of the user. To address this problem,
we first leave out one movie in the rating record for each
time to augment our training data. After that, we reduce the
dimension of these generated rating records with PCA to get
enriched representations of user’s features.

The third method we used is the DeepFM model. DeepFM
was proposed in 2017. It combines the power of factorization
machines for recommendation and deep learning for feature
learning in a new neural network architecture. The architec-
ture of DeepFM is illustrated below. The main reason why
we use DeepFM is that it has a shared input to its "wide"
and "deep" parts, with no need of feature engineering besides
raw features. Comprehensive experiments are conducted to
demonstrate the effectiveness and efficiency of DeepFM for
recommendation system. Similar to what we do with the
residual neural network model, we pass the user’s historical
rating record and the genome score of a candidate movie to a
DeepFM model, and then get a predicted rating for a moive.
With both the residual neural network model and the DeepFM

4

model, we recommend movies having highest predicted rating
for the user.

5 Experiments and Results

5.1 Model Training Comparison
After training, all models can generate fairly reliable and
effective recommendation results. For instance, if a user rated
Spider-Man 1, one of the recommendation prediction will be
Spider-Man series.

In terms of space complexity, since naive model suggests
that there is no need for the extra parameter, its space con-
sumption is significantly smaller. The number of parameters
in the ranking model is the largest and the third model follows
shortly. In terms of time complexity, because the candidates
lists of the three models vary just a little, there are not much
differences.

However, due to the lack of test users, we cannot verify
our model rigorously. Thus, we adopt subjective testing ap-
proach within group members and the overall accuracy ranges
between 80% to 90%.

5.2 Interactive Webpage

Figure 5: Project structure

We build an interative website to present our final works.
Based on the framework of python Django, users can interact
with the web interface without understanding the algorithms
behind it. They first need to rate several movies they have ever
seen and the system will recommend other movies to them.

Our project stack structure is shown as Figure 6 above. The
front-end is built with HTML, jQuery and Bootstrap. The
framework of python Django builds a bridge between front-
end and back-end which is the core skeleton of the website.
In the back-end, both CSV files and MySQL is used as data

Figure 6: Interative webpage

storage method, and ranking modules are called by Django’s
components. The developed project structure is shown on the
right, all website action functions are written in view.py and
it’ll call the functions in ranking modules to calculate which
movies would recommend to the user.

When you login, choose a movie to score, and click on
your username, you can see your scored movies just now. And
after ranking several movies, you can get your personalized
recommended results by clicking on the ’See Recommended
Movies’ button.

Figure 7: Ranked movies

Figure 8: Recommendation results

The process behind it is that when you rank movies, the

5

results would be stored in the Table users_resulttable.
Then the data is sent to ranking modules and it returns the rec-
ommended movieId. After transforming movieId to imdbId
by links.csv, the system reads the moviegenre Table and
print all the movie posts on the screen.

5.3 Test Results & Analysis

Through testing the system by rating some movies and then
show the recommended new movies, we find that if we rate
for Spider-Man II, it will recommend Spider-Man I to me;
if we rate for Mission: Impossible - Ghost Protocol, it will
recommend Mission: Impossible - Rogue Nation; if we give
several comedies high grades, it will recommend many other
comedies to us. The system is relatively accurate overall.

In conclusion, in terms of accurate recommendations, User-
based Collaborative Filtering gives us a relatively broad re-
sults whereas Item-based Collaborative Filtering predicts
fewer outcome with higher accuracy. If we intersect these
two sets of results, it’s possible to get an empty set. From our
testing result so far, we can conclude that the recommendation
effectiveness of the three ranking methods(naive, ranking and
DeepFM) are fairly consistent. However, in terms of train-
ing speed, naive ranking model outweighs the rest. DeepFM
performs a bit slower and ranking is the slowest.

Therefore, if the user rates only a few movies, the running
time of our recommendation system is approximately 2-3
seconds; Once they rate over 10 movies, the time will increase
significantly, larger than 10 seconds or even worse; If rated
movies is larger than 20, the waiting time will be longer than
25 seconds. The time complexity is nonlinear.

Acknowledgements

In this section, it’s my honor to represent all my group mem-
bers to show appreciation to our professor and TA’s instruction.
And to our each member in the team, we have been working
day and night together and have been through so many diffi-
culties for the past few months. Therefore, thanks for all of
us, we could cheer for ourselves.

There are clearly individual contributions for each group
member. YANG Rongfeng was the project manager, build-
ing frameworks and developing web interface system. LAI
Wendi did Data collection & processing, model evaluation
and PPT preparation. Our final system test was done by him.
LAU Kwan Yuen designed the model construction and also
helped to optimize the model. WANG Xueying kept an eye
on our project process and also wrote report part one. LI
Yunli collected and pre-processed data and also designed
powerpoint and wrote report part two.

References

[1] Adomavicius G, Tuzhilin A, Toward the next generation
of recommender systems: a survey of the state-of-the-art
and possible extensions[J], IEEE Transactions on Knowl-
edge and Data Engineering, 2005, 17(6):734-749.

[2] Pazzani M J, Billsus D, Content-Based Recommendation
Systems[J], 2007.

[3] Pasquale Lops, Marco de Gemmis and Giovanni Se-
meraro, Chapter 3 in Recommender Systems Handbook,
2011.

[4] Pazzani M J, A Framework for Collaborative, Content-
Based and Demographic Filtering[J], Artificial Intelli-
gence Review, 1999, 13(5-6):393-408.

[5] Badrul Sarwar, George Karypis, Joseph Konstan, et al,
Item-Based Collaborative Filtering Recommendation Al-
gorithms[C], 10th International World Wide Web Confer-
ence, 2001:285-295.

[6] Guo H, Tang R, Ye Y, et al, DeepFM: A Factorization-
Machine based Neural Network for CTR Prediction[J],
2017.

[7] Guo G, Zhang J, Yorkesmith N, TrustSVD: Collaborative
Filtering with Both the Explicit and Implicit Influence of
User Trust and of Item Ratings[J], 2015.

[8] HRendle S, Scaling factorization machines to relational
data[C], Proceedings of the 39th international conference
on Very Large Data Bases. VLDB Endowment, 2013.

[9] Wang R, Fu B, Fu G, et al, Deep & Cross Network for
Ad Click Predictions[J], 2017.

[10] Steffen Rendle, Factorization Machines, ICDM, 2010.

6

	Introduction
	Background
	Project Description

	Related Work
	Collaborative Filtering Recommendation
	DNN in CTR
	DeepFM

	Data Preparation
	Dataset
	Data Preprocessing

	System Architecture
	The recalling module
	Discovery of similar users
	Movie candidates

	The ranking module

	Experiments and Results
	Model Training Comparison
	Interactive Webpage
	Test Results & Analysis

