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Abstract

Computer vision has been introduced to extract infor-
mation from the give images, such as food classification.
However, current food image data set do not contain a vol-
ume and mass records of food, which leads to an incomplete
calorie estimation. In this paper, we introduce a data set
generated by Y. Liang and J. Li in 2017 [8]. There are 2978
images in this data set and every image contains corre-
sponding each foods annotation, volume and mass records,
as well as a certain calibration reference. To detect the food
objects and segment objects from the background, we do
some research in two deep learning methods to figure out:
Faster R-CNN and Mask R-CNN. However, Faster R-CNN
need to be combined with GrabCut algorithm to get each
food’s contour. After getting the instance segmented, food’s
volume and calorie can be calculated by the given mass and
energy records. The experiment results made from two dif-
ferent methods are comparable and both prove that our es-
timation is effective.

1. Introduction
With the improvement of living standards, the obesity

rate is also growing rapidly reflecting people’s health risks.
People need to control their daily calorie intake by eating
healthier, which is the most basic way to avoid obesity.
However, obese patients often have trouble balancing their
calorie intake and consumption due to lack of relevant nutri-
tional information or other reasons. Despite the nutritional
and calorie labels on the food packaging, it is still not very
convenient for costumers to refer to. Therefore, developing
a computer vision-based measurement method is beneficial
to people who want to lose weight in a healthy way and keep
a healthy lifestyle.

Convolution neural network has been widely used to im-
age classification [7] and object detection [5, 11]. Com-
pared with image classification, the object detection is a
more challenging task since the increase of model com-
plexity. Complexity arises because detection requires the
accurate localization of objects, creating two primary chal-

lenges. First, numerous candidate object locations must be
processed. Second, these candidates provide only rough lo-
calization that must be refined to achieve precise localiza-
tion. Solutions to these problems often compromise speed,
accuracy, or simplicity [6].

Recently, many ideas have been proposed to detect food
energy and the key to calorie estimation is the choice of
calibration. W. Jia, H. C. Chen, et al use circle plate [12]
as their calibration of model. In another research, thumb
is also used as calibration object [9] by Gregorio Villalo-
bos et al. However, these approaches are not popularized
because its self-limitation and instability. More specifically,
the plate is not portable in many cases and the human thumb
could have different size. Therefore, we need to select a cal-
ibration with common and stable attributes.

1.1. R-CNN

The Region-based Convolutional Neural Network
method (R-CNN) is one of the state-of-the-art CNN-based
deep learning object detection approach and has achieved
excellent object detection accuracy by using a deep CNN to
classify object proposals [5]. However, R-CNN has a bad
performance in terms of time and space consuming. Firstly,
it uses a CNN on object proposals. Then SVM models and
bounding-box regression models are trained to fit CNN fea-
tures. Whether in at training time or testing time, the fea-
tures are extracted from each object proposal in each image.
The process is slow and occupy to much storage.

1.2. Object Detection

Object detection means predict the concept and localiza-
tion of the target to gain a complete image comprehension.
The main tasks of object detection are to determine where
the objects are located in the given images and which cate-
gories the objects belong to [13]. The whole process can be
divided into three parts: information region selection, fea-
ture extraction and classification.

Information region selection. Considering the fact that
objects may locate on the different regions with various
sizes, it is natural to take multi-scale sliding windows. Quite
a few useless windows are created to cover all the possi-
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ble locations which indicate expensive computation waste.
However, if we reduce the scan scale by limit the window
choice, the prediction accuracy cannot be promised. How
to tradeoff between the computational cost and satisfactory
prediction is still a challenge.

Feature extraction. To recognize different objects, we
need to extract visual features by convolutional neural net-
works. A set of learnable filters are used to train a feature
descriptor.

The representation is susceptible to the image content,
such as occlusion, illumination conditions and background
clutter etc. A good feature extraction model must be invari-
ant to the cross product of all these variations, while simul-
taneously retaining sensitivity to the inter-class variations.

Classification. After selecting information regions and
extracting features, it is worth classifying the object from a
set of categories to recognize a visual concept. There are
various classifiers such as Nearest Neighbor Classifier, Lin-
ear Classifier and Support Vector Machine (SVM). In Lin-
ear Classifier, each classifier has two major components: a
score function that maps the raw data to class scores, and a
loss function that quantifies the agreement between the pre-
dicted scores and the ground truth labels. It is optimized by
minimizing the loss function with respect to the parameters
of the score function.

1.3. Semantic Segmentation

Semantic segmentation refers to the process of classi-
fying each pixel of the images of what is being repre-
sented. The process of semantic segmentation follows an
encoder and decoder structure where we down-sample the
spatial resolution of input to develop lower-resolution fea-
ture mappings and up-sample the feature representations to
gain a full-resolution segmentation map. So far some ex-
iting and well-studied image classification networks with-
out fully connected layers have been introduced to encode
the input image into feature maps [9]. It has been proven
that adding skip connections to sum the feature maps can
provide necessary details to reconstruct accurate shapes for
segmentation boundaries. Semantic segmentation is very
useful in various areas, including GPS, autonomous vehi-
cles and medical image diagnostics.

2. Dataset

Though Food-101 [1], PFID [2] and FOODD [10] can be
introduced to train and test object detection algorithms, it is
still hard to utilize them to estimate calories just because
they have not prepared the volume and mass as a reference.
The ECUSTFD dataset which is provided by J. Li. and Y.
Liang [8] is designed to estimate calories.

Figure 1. ECUSTFD sample images

2.1. Dataset Description

ECUSTFD is a free public food image dataset. This
dataset contains 19 kinds of food: apple, banana, bread,
bun, doughnut, egg, fired dough nut, grape, lemon, litchi,
mango, mooncake, orange, peach, pear, plum, qiwi,
sachima and tomato. Some example images are shown in
figure 1. The total number of images is 2978. Each food
target has a top view and a side view. There is only a One
Yuan coin as calibration object and no more than two food
in each image. In spite of the image data, the dataset also
provides mass, density and energy records which are used
to calculate calories with predicted volume.

2.2. Shooting Conditions

Relative factors that affect the accuracy of estimation re-
sults: viewpoint, illumination, background and food type.

Viewpoint. Each food contains pictures of two angles:
top view and side view. When taking a top view, shooting
angle is almost 0 degree from the table; and when taking a
side view, shooting angle is almost 90 degree from the table.

Illumination. Considering lighting influence the detec-
tion significantly, the images in the dataset are taken from
different illumination conditions. For instance, some photos
are taken in the dark environment with or without flash.

Background. As objects may appear with backgrounds
in a diversity, it is a natural choice to take pictures with
various backgrounds. In most cases, food is put on a red
or white plate; in other cases, food is placed on the dining
table directly.

Food type. Foods are selected with large volume and
not liable to deform. Since estimating targets with small
volumes is really hard and will be easy to cause great error
compared with the measured ground truth.

3. Faster R-CNN
In figure 2, faster R-CNN architecture takes an image

and multiple object proposals as input. The image will be
put into a convolution neural network with convolutional
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Figure 2. Faster R-CNN

layers and max pooling layers to extract a feature map.
Then, for each object proposal, a region of interest (RoI)
pooling layer produce a fixed-length feature vector from the
feature map. Each feature vector is fed into a sequence of
fully connected layers that finally branch into two sibling
output layers: one that produces softmax probability esti-
mating over K object classes and another layer that outputs
four real-valued numbers for each of the K object classes.
Each set of 4 values encodes refined bounding-box posi-
tions for one of the K classes [4].

3.1. The RoI Pooling Layer

The RoI pooling layer uses max pooling to convert the
features inside any valid region of proposal into a small fea-
ture map with a fixed spatial extent of H ×W where H and
W are hyper-parameters that are independent of any particu-
lar RoI. Each RoI is defined by a four-tuple (r, c, h, w) that
specifies its top-left corner (r, c) and its height and width
(h,w). RoI max pooling works by dividing the h × w RoI
window into an H × W grid of sub-windows of approxi-
mate size h

H ×
w
W and then max pooling the values in each

sub-window into the corresponding output grid cell.

3.2. Initializing with pre-trained networks

Faster R-CNN is constructed on the pre-trained Ima-
geNet [3] networks, each with five max pooling layers and
between five and thirteen convolutional layers. When a pre-
trained network initializes a Fast R-CNN network, it under-
goes three transformations.

First, Fast R-CNN not only an image but also a set of
proposals as input.

Second, the last max pooling layers is replaced by RoI
pooling layer with a pair of hyper-parameter H and W to
define a fixed window size.

Third, the network’s last fully connected layer and soft-
max are modified to two sibling output layers: softmax for
classification and regression for bounding-box positions.

3.3. Mini-batch sampling and SGD

Back-propagation through R-NN network is highly inef-
ficient when each training sample comes from a different
image. The inefficiency stems from the fact that each RoI

Figure 3. GrabCut

may have a very large receptive field, often spanning the
entire input image.

In Faster R-CNN, back-propagation is more efficient by
taking advantage of stochastic gradient descent (SGD) with
mini-batches during training, first by sampling N images
and then by sampling R

N RoIs from each image. Critically,
RoIs from the same image share computation and memory
in the forward and backward passes. Making N small de-
creases mini-batch computation.

3.4. Scale invariance

Faster R-CNN achieve scale invariant object detection
in two ways: ”brute force” learning and by using image
pyramids.

In the brute-force approach, each image is processed at a
pre-defined pixel size during both training and testing. The
network must directly learn scale-invariant object detection
from the training data.

The multi-scale approach, in contrast, provides approx-
imate scale-invariance to the network through an image
pyramid. At test-time, the image pyramid is used to ap-
proximately scale-normalize each object proposal. Dur-
ing multi-scale training, Faster R-CNN randomly sample a
pyramid scale each time an image is sampled as a form of
data augmentation.

4. GrabCut
The figure 3 shows how GrabCut works. GrabCut pro-

vides a powerful and iterative way to segment the fore-
ground and background in each image with bounding-box
annotations.

4.1. Color data modeling

The image is taken to consist of pixels in RGB color
space. As it is impractical to construct adequate color space
histograms, GrabCut follows a practice that is already used
for soft segmentation and use GMMs. Each GMM, one for
the background and one for the foreground, is taken to be
a full-covariance Gaussian mixture with K components. In
order to deal with the GMM tractably, in the optimization

3



framework, an additional vector k = k1, ..., kn, ..., kN is
introduced, with kn ∈ 1, ...,K, assigning, to each pixel, a
unique GMM component, one component either from the
background or the foreground model, according as αn = 0
or 11.

4.2. Segmentation by iterative energy minimization

The new energy minimization scheme in GrabCut works
iteratively, in place of the previous one-shot algorithm. This
has the advantage of allowing automatic refinement of the
opacities, as newly labelled pixels from the region of the
initial trimap are used to refine the color GMM parameters
θ.

The first step of GrabCut system is straightforward, done
by simple enumeration of the kn values for each pixel n.
Step 2 is implemented as a set of Gaussian parameter esti-
mation procedures, as follows. For a given GMM compo-
nent k in, say, the foreground model, the subset of pixels is
defined. The mean and covariance are estimated in standard
fashion as the sample mean and covariance of pixel values.
Finally step 3 is a global optimization, using minimum cut.

The structure of the algorithm guarantees proper conver-
gence properties. This is because each of steps 1 to 3 of iter-
ative minimization can be shown to be a minimization of the
total energy E. E decreases monotonically, so the algorithm
is guaranteed to converge at least to a local minimum of
E. It is straightforward to detect when E ceases to decrease
significantly, and to terminate iteration automatically.

4.3. User interaction and incomplete trimaps

The iterative minimization algorithm allows increased
versatility of user interaction. In particular, incomplete la-
belling becomes feasible where, in place of the full trimap
T , the user needs only specify, say, the background region
TB , leaving the foreground region TF = 0. No hard fore-
ground labelling is done at all. Iterative minimization deals
with this incompleteness by allowing provisional labels on
some pixels which can subsequently be retracted; only the
background labels TB are taken to be firm guaranteed not
to be retracted later and the initial TB is determined by the
user as a strip of pixels around the outside of the marked
rectangle.

The initial, incomplete user-labelling is often sufficient
to allow the entire segmentation to be completed automat-
ically, but by no means always. If not, further user editing
is needed, it takes the form of brushing pixels, constraining
them either to be firm foreground or firm background; then
the minimization step 3. is applied. Note that it is sufficient
to brush, roughly, just part of a wrongly labeled area. In
addition, the optional ”refine” operation updates the color
models, following user edits. This propagates the effect of
edit operations which is frequently beneficial. Note that for
efficiency the optimal flow, computed by Graph Cut, can be

Figure 4. Calorie Estimation Flowchart

re-used during user edits.

5. Calories Estimation Process
The process of calories estimation has three step as fig-

ure 4 shown. First, we need to detect the object by Faster
R-CNN. Then segmented object pixels are got after apply-
ing GrabCut to the bounding boxes from Faster R-CNN. At
last, we would estimate the volume of each object and then
calculate their calories.

5.1. Object Detection by Faster R-CNN

As we described before, Faster R-CNN network takes an
image and a set of proposals as input and output a sequence
of bounding boxes with specific classification.

After detecting objects from the top view, we can get a
sequence of bounding boxes box1T , box

2
T , . . . , box

n
T . For ith

(i ∈ 1, 2, . . . , n) bounding box boxiT , the food category is
typeiT . Besides, we regard the bounding box cT with the
highest score as the calibration object to compute the top
view scale factor.

In a similar way, we detect the objects from the side view
to get a sequence of bounding boxes box1S , box

2
S , . . . , box

m
S .

For jth (j ∈ 1, 2, . . . ,m) bounding box boxjS , the food cat-
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egory is typejS . Finally, the bounding box cS with the high-
est score as the calibration object is used to compute the top
view scale factor.

5.2. Image Segmentation with GrabCut

After detecting the objects, we apply GrabCut algorithm
to handle each bounding box generated from Faster R-CNN
networks. GrabCut segment the object in the bounding box
from the background by replacing the values of the back-
ground pixels with zero. The image P iT (i ∈ 1, 2, . . . , n)
which is the output of GrabCut algorithm has the same size
with boxiT , indicating that GrabCut only remains the object
pixels values while set the background values to zero.

5.3. Volume Estimation

To estimate volume of each object, we need to calcula-
tion the scale factor depending on the detected calibration.
When we use the One Yuan coin as the reference, accord-
ing to the coin’s real diameter(2.50 cm), we can calculate
the side view’s scale factor αS (cm) with Equation 1.

αS =
2.5

(WS +HS)/2
(1)

where WS is the width of the bounding box cS and HS is
the height of the bounding box cS .

Then, the top view’s scale factor αT (cm) is calculated
by Equation 2.

αT =
2.5

(WT +HT )/2
(2)

where WT is the width of the bounding box cT and HT is
the height of the bounding box cT .

For each food image P iT (i ∈ 1, 2, . . . , n), we aim to find
an image in set P 1

S , P
2
S , . . . , P

m
S with the same food cate-

gory. If typeiT equals to typejS(j ∈ 1, 2, . . . ,m), P jS will be
marked to calculate this food’s volume with P jT . We divide
objects into three shape types: ellipsoid, column, irregular.
According to the food type typeiT , we select the correspond-
ing volume estimation formula as shown in Equation 3.

v =


β · π4 ·

∑HS

k=1(L
k
S)

2 · α3
S ellipsoid

β · (sT · α3
T ) · (HS · αS) column

β · (sT · α3
T ) ·

∑HS

k=1(
Lk

S

LMAX
S

)2 · αS irregular

(3)
In Equation 3, HS is the number of rows in side view PS

and LkS is the number of foreground pixels in row k(k ∈
1, 2, . . . ,HS). LMAX

S = max(L1
S , L

2
S , . . . , L

HS

S ) records
the maximum number of foreground pixels in PS · ST =∑HT

k=1 L
k
T is the number of foreground pixels in top view

PT , where LkT is the number of foreground pixels in row
k(k ∈ 1, 2, . . . ,HT ). β is the compensation factor and the
default value is 1.

5.4. Calorie Estimation

After getting volume of the object, we get down to esti-
mate the corresponding mass with Equation 4.

m = ρ× v (4)

where v(cm3) is the volume of current food and ρ(g/cm3)
is the density value.

Finally, each food’s calorie is calculated by Equation 5.

C = c×m (5)

where m(g) is the mass of current food and c(Kcal/g) is
its calories per gram.

6. Experiment
Our experiment is done in the environment:

• Matlab + matcaffe + VS2013 + cuda65 + cudnn +
opencv2.49

• Faster R-CNN project

Our project is tested on Windows 10 x64 with Navida
Geforce 940MX.

In this section, we present the volume estimation results
using the food images dataset. These food and fruit im-
ages are divided into train and test sets. In order to avoid
using train images to estimate volumes, the images of two
sets are not selected randomly but orderly. The numbers of
train and test images used for Faster R-CNN are listed in
Figure 5. After Faster R-CNN is well trained, we use those
pairs of test images which Faster R-CNN correctly recog-
nizes to estimate volumes. In other words, those images
Faster R-CNN cannot identity or misidentify in test sets will
be discarded. The numbers of images in volume estimation
experiments are shown in Figure 5 either. The code can be
downloaded at this website. We use mean error to evaluate
volume estimation results. Mean error ME is defined as:

MEi =
1

ni

ni∑
j=1

vj − Vj
VJ

(6)

In Equation 6, for food type i , ni is the number of im-
ages Faster R-CNN recognizes correctly. Since we use two
images to calculate volume, so the number of estimation
volumes for ith type is ni. vj is the estimation volume for
the jth pair of images with the food type i; and Vj is corre-
sponding estimation volume for the same pair of images.

Volume estimation results are shown in Figure 6. For
most types of food in our experiment, the estimation volume
are closer to reference volume. The mean error between es-
timation volume and true volume does not exceed ±20%
except banana, grape, mooncake. For some food types such
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Figure 5. Image Number in Experiment

as orange, our estimation result is close enough to the true
value. As for the bad estimation results of grape, the way
we measure volumes of grapes should be to blame. When
measuring grapes’ volumes, we have not used plastic wrap
to cover grapes but put them into the water directly, so the
volumes we estimated are far from the reference values be-
cause of the gaps. All in all, our estimation method is avail-
able.

7. Conclusion

In this paper, we provided our calorie estimation method.
Our method needs a top view and side view as its inputs.
Faster R-CNN is used to detect the food and calibration ob-
ject. GrabCut algorithm is used to get each food’s contour.
Then the volume is estimated with volume estimation for-
mulas. Finally we estimate each food’s calorie. The experi-
ment results show our method is effective.
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Figure 6. Volume Estimation Results
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