
MSBD 5003 Big Data Computing of HKUST

IMPLEMENTATION OF DISTRIBUTED MINIMUM SPAN-
NING TREE ALGORITHM BASED ON PYSPARK

LAU Kwanyuen
Student ID: 20647191

YANG Rongfeng
Student ID: 20644943

TANG Huimin
Student ID: 20636635

YIN Dongxin
Student ID: 20658592

ABSTRACT

In this project, we implement three minimum spanning tree algorithms using
Spark Python API. Compared with traditional algorithm, these distributed min-
imum spanning trees can handle with large graphs which do not fit in the memory
of a single machine. To evaluate the performance of the distributed minimum
spanning trees, we analysis the theoretical processing time, computation cost and
computation time for these algorithms under certain assumption. Finally, we apply
the 3 algorithms to real-word data to further analysis the algorithm performance
and scalability.

1 MINIMUM SPANNING TREE ALGORITHM

Minimum Spanning Tree (MST) algorithm is one of the most important and fundamental algo-
rithms in graph problems. Given a connected, weighted and undirected graph, a spanning tree is the
subset of the graph, that is a tree and connects all the vertices together (Patki, 2015). The minimum
spanning tree is the spanning tree with the least sum of edge weights. Each minimum spanning tree
includes (V − 1) edges, where V is the number of vertices in the original graph. MST finds diverse
applications ranging from network design to image segmentation. Generally, there are two classical
algorithms for finding a minimum spanning tree: Kruskals algorithm and Prims algorithm.

1.1 KRUSKAL’S ALGORITHM

Kruskal’s algorithm is a greedy method to build a minimum spanning tree by adding the edges one
by one until all vertices are connected in one subgraph. Specifically, this algorithm begins with a
set of sorted weighted edges. In each iteration, pick the edge with the smallest weight and check
whether or not it forms a cycle with the former edges. If a cycle is not formed, take this edge as the
partition of the minimum spanning tree. Else just discard this edge and continue. Repeat the last
step until there are (V − 1) edges included in the constructed minimum spanning tree. One example
for Kruskal’s algorithm is shown in figure 1.

The time complexity for Kruskal’s algorithm is O(ElogE) or equally, O(ElogV), where E is the
number of edges and V is number of vertices. Sorting the edge weights takes O(ElogE) time. A
disjoint-set data structure, keeping track of a set of elements partitioned into a number of disjoint
subsets, performsO(logV) operations to detect cycle. So the overall time complexity isO(ElogE+
logV). The value of E can be at most V 2 and log(V 2) = 2× logV is O(logV). Therefore, the total
time for Kruskal’s algorithm is O(ElogE) or O(ElogV) (Algo).

1.2 PRIM’S ALGORITHM

Prim’s algorithm is another greedy method to construct a minimum spanning tree. Compared with
Kruskal’s algorithm, Prim’s algorithm adds vertices instead of edges to the growing spanning tree.
The idea is to two disjoint set of vertices. One contains the vertices included in the minimum
spanning tree, the other contains the vertices not yet included. Next, consider all edges connecting
the two set and pick the edge with the least weight from these edges. Then remove the vertices

1

MSBD 5003 Big Data Computing of HKUST

Figure 1: Example for Kruskal’s Algorithm

Figure 2: Example for Prim’s Algorithm

connecting the chosen edge to the set containing MST. Repeat the above steps until all the vertices
is included in the MST set. One example for Prim’s algorithm is shown in figure 2.

Time complexity for Prim’s algorithm is O(v2). While with the help of a binary heap and a priority
queue, the time complexity can be reduced to O(ElogV).

2 IMPLEMENTATION IN SPARK

How to handle with the large-scale problem is a very import issue. Many of the state-of-the-art
approaches for such problems rely on numerical optimization, however, because of the scalability
issues, usually one cannot directly apply classical optimization methods to solve large-scale prob-
lems (Hsieh et al., 2006). In this project, we apply divide and conquer scheme to implement
distributed minimum spanning tree algorithms in spark. In divide and conquer algorithm, problems
should be easily decomposed into many independent subproblems and the solutions to the subprob-
lems can be easily combined to give the solution to the original problems. The process of divide and
conquer is shown in figure 3.

Particularly, in big data system, divide and conquer scheme begins with divide the problem into k
partitions using mapPartitions (one method in spark which maps function on each partition of
RDD instead of each element of partition) where k is the number of executors in the system. Next,
search for the minimum spanning tree on each partition. Additionally, we might apply distinct (a
spark function which returns a new RDD with the distinct elements of existing RDD) to remove
duplicate solutions belonging to local MSTs. Until the local solutions from the subproblems are

2

MSBD 5003 Big Data Computing of HKUST

Figure 3: Divide and Conquer Scheme

small enough to fit on single machine, we use to initialize a global MST solver which converges
quickly. Finally, we get global MST by computing MST algorithm on local MSTs and one machine.

3 IMPLEMENTATION

Next, we will look at three distributed algorithms. Among them, edge partitioning and
vertex partitioning are based on Kruskal’s algorithm. The remaining one, parallel prim′s is
based on Prim’s algorithm. The basic assumption in all three algorithms is that the vertices of the
graph fit in the memory of a single machine, but the edges don’t.

Firstly, we should introduce the lemma above to help in establishing the correctness of the algorithms
in a distributed setting.

Lemma 1 Any edge that does not belong to MST of a subgraph containing the edge does not belong
to the MST of the original graph.

Based on this lemma, we are inspired to improve the speed of Kruskal’s algorithm by first elim-
inating edges parallelly and performing Kruskal’s algorithm on the remaining edges. Note that,
implementations of disjoint set structure, Kruskal’s algorithm and Prim’s algorithm are required
before the implementations of parallel algorithms. Although the implementations of those serial
algorithms will not be discussed for the sake of simplicity, details could be found in the attachment.

3.1 EDGE PARTITIONING

3.1.1 ALGORITHM

Following the above scheme, we come up with a divide-and-conquer algorithm, which is to split
edges randomly into disjoint sets and compute local MSTs parallelly first, and then to compute a
global MST with edges belonging to local MSTs. Note that, all distributed machines share a set of
vertices when computing local MSTs.

3.1.2 ANALYSIS

We use the following notation for the analysis:

Number of vertices: n
Number of edges: m = n1+c

Memory of each machine: η = n1+ε

Number of machines required l = m
η = nc−ε

Lemma 2 The algorithm terminates after
⌈
c
ε

⌉
iterations and returns the Minimum Spanning Tree.

Proof By lemma 1 we know that any edge that is not part of the MST on a subgraph of G is also
not part of the MST of G by the cycle property. Since the partition of edges is random, expected

3

MSBD 5003 Big Data Computing of HKUST

Algorithm 1 Edge Partitioning Algorithm
1: function EDGEPARTITION(G(V,E))
2: η =Memory of each machine
3: e = E
4: while |e| > η do
5: l = Θ(|E|η)

6: Split e into e1, e2, . . . , el using a universal hash function
7: Compute T ∗i =KRUSKAL(G(V, ei)) . In parallel
8: e = ∪iT ∗i
9: end while

10: A =KRUSKAL(G(V, ei))
11: return A
12: end function

number of edges on each machine is η. After one iteration, |∪iTi| ≤ l× (n− 1) = nc−ε · (n− 1) =
n1+c−ε + nc−ε = O

(
n1+c−ε

)
. Thus the number of edges reduce by a factor of nε.

For the next iteration, if you choose l such that it is just enough to fit all the remaining edges on
l machines, we can prove that the edges reduce by factor of nε again. Thus if we continue this
process, after

⌈
c
ε

⌉
− 1 iterations the input is small enough to fit onto a single machine, and the

overall algorithm terminates after
⌈
c
ε

⌉
iterations.

One question that arises is the choice of the number of machines to use at each iteration. We will
prove that it is in fact better to use only as many machines as required to fit all the edges in memory
as opposed to using all the available machines.

Lemma 3 The optimal number of machines that should be used decreases for each iteration such
that |ei|li is constant and is equal to m

l . Here, ei are the number of edges left after (i− 1)
th iteration

and li is the machines used at ith iteration.

Proof Let us assume that the algorithm terminates after t iterations. We know after t - 1 iterations,
the edges can fit in memory of single machine. Therefore, the total processing time can be written
as:

m

l1
logn+

l1n

l2
logn+

l2n

l3
logn+ . . .+

lt−2n

lt−1
logn+ lt−1nlogn

In algorithm 3 line 7, we distribute remaining edges to li machines after i − 1 iterations. The li
machines compute parallelly so the computation complexity in each machine is the same. Therefore,
we only need to consider the processing time of a single machine.

The time complexity of KRUSKAL is O(mlogn). m represents the number of edges, n repre-
sents the number of vertices. In the proof of Lemma 2, we get |∪i−1Ti−1| ≤ li−1 × (n− 1) =
O(n1+c−ε) = O(li−1 × n),|∪i−1Ti−1| which is the number of remaining edges after i − 1 itera-
tions. Thus, at the i iteration, these edges need to be distributed to li machines and the processing
time of each machine at this iteration is |∪i−1Ti−1|

li
logn = li−1·n

li
logn.

The optimal li can be solved by doing partial derivative on l1, l2, . . . , lt−1 respectively to T and
setting to zero.

T =
m

l1
logn+

l1n

l2
logn+

l2n

l3
logn+ . . .+

lt−2n

lt−1
logn+ lt−1nlogn

Then

∂T

∂l1
= 0

4

MSBD 5003 Big Data Computing of HKUST

∂T

∂l2
= 0

...

∂T

∂li
= 0

...

∂T

∂lt−2
= 0

∂T

∂lt−1
= 0

Simplify them and we get

l21 = l2
m

n

l22 = l1l3

l23 = l2l4

...

l2i = li−1li+1

...

lt−2 = lt−3lt−1

l2t−1 = lt−2

According to Lemma 2, make the iteration t = c
ε . The initial condition is l1 = m

η = nc−ε. substitute
l1 into the above equtions,

l1 = nc−ε =
(m
n

) t−1
t

l2 = nc−2ε =
(m
n

) t−2
t

l3 = nc−3ε =
(m
n

) t−3
t

5

MSBD 5003 Big Data Computing of HKUST

...

li = nc−iε =
(m
n

) t−i
t

...

lt−1 = nc−(t−1)ε =
(m
n

) 1
t

Therefore

|ei|
li

=
n1+c−(i−1)ε

li
= n1+ε = constant

3.1.3 PROCESSING TIMES AND COMMUNICATION COSTS

The processing time per iteration is sum of time taken to perform Kruskal’s on one machine and
time taken to partition the remaining edges for the next iteration. The total processing time can be
written as:

⌈c
ε

⌉
×
(
O
(m
l

logn
)

+O
(m
l

))
The communication costs involve one all-to-all communication which is due to the shuffle performed
at the end of each iteration. As the number of edges decrease with subsequent iterations, the com-
munication cost also decreases. The total communication cost becomes a geometric progression:

m+
m

nε
+

m

n2ε
+

m

n3ε
+ . . .+

m

n(t−1)ε
=
n(nc − 1)

1− n−ε

3.1.4 IMPLEMENTATION

The random splitting of edges is conducted before the parallelization with the built-in sort function
and random function. Then, mapPartitions is employed with Kruskal’s to obtain an RDD con-
taining edges belonging to local MSTs. We finally compute the global MST with edges belonging
to local MSTs.

Figure 4: Edge Partitioning Implementation on Spark

6

MSBD 5003 Big Data Computing of HKUST

3.2 VERTEX PARTITIONING

3.2.1 ALGORITHM

In the vertex partitioning algorithm, instead of partitioning edges, we partition vertices. Like the
edge partitioning algorithm, we first split vertices randomly into disjoint sets with equal size. After
that rather than compute local MSTs for each partition, we consider pairs of these partitions, which
means we compute local MSTs for each pair of partitions, to cover edges that go across partitions.
Finally, we compute a global MST with edges belonging to local MSTs.

Algorithm 2 Vertex Partitioning Algorithm
1: function VERTEXPARTITION(G(V,E))
2: Set k
3: Split V into V!, V2, . . . , Vk using a universal hash function
4: Ei,j = {(u, v) ∈ E|u, v ∈ Vi ∪ Vj}
5: Gi,j = G(Vi ∪ Vj , Ei,j)
6: for i, j in k × k do
7: Mi,j =KRUSKAL(Gi,j) . In parallel
8: end for
9: H = G(V,∪i,jMi,j)

10: M =KRUSKAL(H)
11: return M
12: end function

3.2.2 ANALYSIS

Theorem 4 The tree M computed by algorithm is the minimum spanning tree of G.

Proof The algorithm works by sparsifying the graph and then computing MST of the resulting
subgraph. By Lemma 1, it is clear that we are not removing the edges which are part of MST of G.
Hence the resulting MST M is indeed the MST of G.

For this algorithm, we assume that we can fit Õ(n1+
c
2) on one machine, where m = n1+c. Õ and

O is the same as O, except we ignore the logarithmic terms.

Lemma 5 Let k = n
c
2 , then with high probability the size of every Ei,j is Õ(n1+

c
2)

Proof We bound the total number of edges in Ei,j by bounding the total degrees of the vertices.
Obviously, the number of edges of Gi,j is smaller than the sum of degrees of vertices i.e. |Ei,j | ≤∑
v∈Vi deg (v) +

∑
v∈Vj deg(v). Only for the purpose of proof, partition the vertices into groups

by their degree. W1 represents the vertices with 1 or 2 degree, W2 represents the vertices with 3 or
4 degree. When i ≥ 2, Wi = {v ∈ V : 2i−1 < deg (v) ≤ 2i}. Assume G has n vertices so the
vertices can be divided into logn groups.

Consider the number of vertices fromWi mapped to Vj . If the group has a small number of elements,
that is, |Wi| < 2n

c
2 logn, then

∑
v∈Vi deg (v) ≤ 2n1+

c
2 logn =Õ(n1+

c
2). If the Wi is large, that is,

|Wi| > 2n
c
2 logn, following application of Chernoff bound says that the number of elements of Wi

mapped into Vj is O(logn) with probability at least 1− 1
n . i.e.

P [|Wi ∩ Vj | = O(logn)] ≥ 1− 1

n

Let X = |Wi ∩ Vj |, using Chernoff bounds

E(X) = O(logn)

P (X > (1 + δ) logn) ≤ e−
δ2 logn

3

7

MSBD 5003 Big Data Computing of HKUST

P (X > (1 + δ) logn) ≤ e−
δ2 logn

3

P (X > (1 + δ) logn) ≤ 1

n
e
δ2

3

When δ → 0

P (X > logn) ≤ 1

n

P (X ≤ logn) ≥ 1− 1

n

Therefore with at least the probability of 1− logn
n∑

v∈Vj

deg (v) ≤
∑
i

∑
v∈Vj∩Wi

deg(v) ≤
∑
i

2n1+
c
2 n ≤ Õ(n1+

c
2)

Hence proved.

3.2.3 PROCESSING TIMES AND COMMUNICATION COSTS

We use the following notation for the analysis:

Number of vertices: n
Number of edges: m = n1+c

Memory of each machine: η = n1+
c
2

Number of machines required: k = m
η = n

c
2

We showed that with high probability, number of edges on one machine isO(n1+
c
2) which isO(mk).

The number of vertices on each machine is O(nk). Also, we know that after one iteration we can fit
remaining O(n1+

c
2) edges on single machine. We perform Kruskal’s on this to obtain MST. Thus,

the total processing time is:

O

(
m

k
· logn
k

)
+O(n1+

c
2 · logn)

The communication cost involves one one-to-all broadcast where we broadcast the vertex partition
to all C2

k machines. There is one all-to-all groupByKey because we have to gather edges with
same key on one machine. Lastly, there is one all-to-one communication for the last step where we
collect all the remaining edges to perform single machine kruskal’s. Thus, the total communication
cost becomes:

O
(
nk2

)
+O (m) +O(n1+

c
2)

For the communication time we assume the broadcast is done by the BitTorrent model. For the final
all-to-one collect, each machine sends n1−

c
2 data in expectation. Therefore, the total communication

time can be written as:

O (n log k) +O (m) +O(n1−
c
2)

Note that we have assumed k = n
c
2 for the purposes of analysis. If we have fewer than n

c
2 machines,

say l machines, then the processing time just gets multiplied by the factor l
k and the communication

time can be rewritten trivially in terms of l.

8

MSBD 5003 Big Data Computing of HKUST

Figure 5: Vertex Partitioning Implementation on Spark

3.2.4 IMPLEMENTATION

The vertices are split randomly using the built-in sort function and random function. Next, we ob-
tain every distinct pair of partitions by a combination of cartesian and mapPartitions. After that,
another mapPartitions is employed with Kruskal’s to obtain an RDD containing edges belonging
to local MSTs. Since an edge can belong to multiple pairs of partitions, we need to use distinct
function to remove duplicates among edges belonging to local MSTs.

3.3 PARALLEL PRIM’S

3.3.1 ALGORITHM

The parallel prim’s differs from the two aforementioned algorithm in which it works by building an
MST from scratch rather than eliminating edges that do not belong to the MST. At the first step,
we find the smallest edges leaving every vertex. Then, we add these edges to the MST and at each
subsequent iteration, we find the smallest edges leaving each connected component and add them to
the MST. The global smallest edges leaving each connected component can be found by finding the
sorted smallest edges leaving each connected component on individual machines.

3.3.2 ANALYSIS

Lemma 6 The algorithm takes at most dlog2ne iterations to complete.

Proof At each step, we find the smallest edge leaving each connected component. Therefore, by the
handshake lemma, the number of unique edges that we find at iteration i, is at least zi2 where zi is the
number of connected components at the beginning of iteration i. Therefore, at the end of iteration
i, there are at most zi2 connected components. If we had more than zi

2 unique edges, the number of
connected components at the end of the iteration will only be fewer.

At the beginning of the first iteration, each vertex is in its own connected component, i.e. z1 = n.
Therefore, the number of unique edges added at the first iteration is at least n2 . This means, that at
the end of the end of the first iteration, there are at most n2 connected components.

Therefore, by induction, the number of connected components at the edge of iteration i is n
2i . When

we are left with just one connected component, we have found the MST. Hence, the total number of
iterations taken by the algorithm is dlog2ne.

9

MSBD 5003 Big Data Computing of HKUST

Algorithm 3 Parallel Prim’s Algorithm
1: function PARALLELPRIMS(G(V,E))
2: A = DISJOINTEST ()
3: for i ∈ V do
4: T = {}
5: A.MAKE-SET(i)
6: end for
7: Broadcast A
8: Ê =List of minimum edges leaving each disjoint set . In parallel
9: while |Ê| > 0 do

10: for e in Ê do
11: A.UNION(u, v)
12: T = T + e
13: end for
14: Broadcast A
15: Ê =List of minimum edges leaving each disjoint set . In parallel
16: end while
17: H = G(V,∪i,jMi,j)
18: return T
19: end function

3.3.3 PROCESSING TIMES AND COMMUNICATION COSTS

The processing time for each iteration consists of 3 parts,

• Time to find the smallest edge leaving each component component in each machine

• Time to perform the reduce operation to obtain the smallest edge

• Time to find the perform the union operations to merge connected components

If implemented efficiently using path-compression the cost of each operation in a disjoint-set data
structure is O(α(n)). Since this function is grows very slowly and is effectively a constant ¡ 5 for all
practical purposes, we will assume that the disjoint set operations take a constant amount of time.

We have already shown that the number of connected components at step i is at most n
2i . The total

processing time of the reduce operations can be expressed as the sum of a geometric series,

nk
2

+
nk
4

+
nk
8

+ . . .+
nk
2i

= O(nk)

The overall processing time for the union operations is the same as the processing time for the reduce
operations since we assume that disjoint set operations take a constant amount of time. Therefore,
the total processing time can be written as,

logn×O
(m
k

)
+O(nk)

At each iteration, we have one one-to-all broadcast of the disjoint set data structure. This is done
using a BitTorrent-like broadcast. The size of the disjoint set data structure is O(n) at each iteration
and it is broadcast to k machines. Therefore, the communication cost for this isO(nk · logn). Since,
we are using a BitTorrent-like broadcast, the communication time for this is O(n · logk · logn).

We also have one all-to-one reduce operation to find the smallest edges leaving each connected com-
ponent. Since the number of connected components at iteration i is at most n

2i , the communication
cost for this is,

nk
2

+
nk
4

+
nk
8

+ . . .+
nk
2i

= O(nk)

10

MSBD 5003 Big Data Computing of HKUST

Figure 6: Parallel Prim’s Implementation on Spark A

The communication for the reduce happens in parallel, therefore the communication time for this is,

n

2
+
n

4
+
n

8
+ . . .+

n

2i
= O(n)

Therefore, the total communication cost is,

O (nk · logn) +O(nk)

The total communication time is,

O (n · logk · logn) +O(n)

3.3.4 IMPLEMENTATION

We use disjoint set structure to indicate connectedness of vertices and broadcast it to all machines.
Before we use mapPartitions to find the minimum edges in each machine, we first sort all edges
by their weights, so that we find the local smallest edges more quickly.

Then, we user distinctt to eliminate duplicates among edges belonging to local MSTs. To find the
global smallest edges, we simply sort all local smallest edges. Lastly, we update the connectedness
of vertices and broadcast it to all machines again.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Our distributed algorithms experiments setup are shown in Table 1:

It’s should be noticed that our test tasks were done in one machine and we divided our RDD into 4
parallel partitions to do computation.

4.2 DATASET AND RESULTS

The experiment was done on 8 different networks: netscience, cora, dblp, web-NotreDame, web-
Stanford, web-Google, web-BerkStan and roadNet-PA. In table 2, we order these networks and their
results from top to bottom according to the complexity. Nodes from 1,589 to 1,088,092 and edges
from 2,742 to 1,541,898.

11

MSBD 5003 Big Data Computing of HKUST

Figure 7: Parallel Prim’s Implementation on Spark B

Table 1: Performance Experiment Setup

OS Windows10
Framework Spark 2.4.4 and Hadoop 2.7.7

RAM 24G RAM
SSD 500G SSD
CPU Intel Core i7-7500 (2 cores / 4 threads)

Partition 4 Partitions

To have a better view of the experiment results, we visualize the result in this bar chart. The blue,
pink and red represent edge partition, vertex partition and parallel prim respectively. The height of
the bar shows the running time of an algorithm on a specific network.

We could see that the edge partition is the fastest algorithm among them. No matter how network
becomes complicated, the edge partition could have stable performance. Moreover, when the edge
number is small, vertex partition algorithm takes the longest time. After the web-NotreDame, paral-
lel prim takes more time than vertex partition and it becomes slower and slower. As the complexity

Table 2: Dataset and Results
Networks Nodes Edges Edge Partition Vertex Partition Parallel Prim

netscience 1,589 2,742 8.1s 28.1s 16.9s
cora 2,708 5,429 8.4s 28.8s 21.1s
dblp 317,080 1,049,866 21.0s 72.1s 63.5s

web-NotreDame 325,729 1,497,134 17.6s 72.6s 46.1s
web-Stanford 281,903 2,312,497 38.0s 95.8s 117.6s
web-Google 875,713 5,105,039 59.9s 180.9s 195.2s

web-BerkStan 685,230 7,600,595 69.4s 231.8s 334.7s
roadNet-PA 1,088,092 1,541,898 62.7s 185.8s 202.7s

12

MSBD 5003 Big Data Computing of HKUST

Figure 8: The Experiment Results About Three Distributed Algorithms Across Different Networks

of the network increases, the whole execution time of parallel prim rise from 16.9s to 202.7s. How-
ever, the edge partition algorithm only need half time of it in roadNet-PA.

Actually, the experiment results are somehow different from our hypothesis. Unfortunately, due to
the lack of time, we are not able to conduct a rigorous analysis on it. Nevertheless, we are still able to
propose some assumptions to explain the difference. The first possible reason is that our hypothesis
is fully based on mathematics, not considering the efficiency of code. The second assumption is that
our algorithms were tested on a single machine, resulting in an unexpected decay of performance.

5 CONCLUSION

• Based on pyspark, three distributed algorithms for computing the MST of a given graph are
implemented and compared based on processing time.

• In all cases, the performance of Edge Partition is superior to Vertex Partition and Parallel
Prim algorithms.

6 FUTURE WORK

• Since all of the above algorithms were tested on one machine, we did not study the scala-
bility of the algorithms in a practical setting. The performance of the algorithm may vary
depending on the speed of the CPU and the amount of available network bandwidth.

• Not all of the running time as mentioned above times are expected, and sometimes there is
even a large gap from our expectations. In fact, the running time depends on the structure
of the graph and may vary greatly depending on the structure of the graph. Therefore, it is
significant to study the performance of algorithms on different types of graphs.

• There may be ways to improve the design of the algorithm further. For example, there may
be a bright partitioning scheme for edge partitioning and vertex partitioning. Alternatively,
for parallel Prim’s, there may be a way to cache the smallest edges so that each connected
component eliminates duplicate work.

REFERENCES

Greedy Algo. Kruskal’s minimum spanning tree algorithm. https://www.geeksforgeeks.
org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/.

13

https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/

MSBD 5003 Big Data Computing of HKUST

Cho Jui Hsieh, Si Si, Donghyuk Shin, and Inderjit Dhillon. Divide conquer methods for big data
analytics. 2006.

Rohit Patki. Distributed minimum spanning trees. Swaroop Indra Ramaswamy, 2015.

14

	Minimum Spanning Tree algorithm
	Kruskal's algorithm
	Prim's algorithm

	Implementation in spark
	Implementation
	Edge partitioning
	Algorithm
	Analysis
	Processing times and communication costs
	Implementation

	Vertex partitioning
	Algorithm
	Analysis
	Processing times and communication costs
	Implementation

	Parallel Prim's
	Algorithm
	Analysis
	Processing times and communication costs
	Implementation

	Experiments
	Experiments setup
	Dataset and Results

	Conclusion
	future work

