
Proposal: Implementation of Minimum Spanning Tree Algorithm Using Spark
Python API

YANG Rongfeng
20644943

LAU Kwan Yuen
20647191

TANG Huimin
20636635

YIN Dongxin
20658592

MSBD 5003, Big Data Technology, HKUST
{ryangag,klauak,htangak,dyinaa}@connect.ust.hk

1 Introduction

Our team decides to carry out a deep reseach on Minimum
Spanning Tree Algorithms (MST), which is one of the most
important primitives used in graph algorithms. To solve MST
problems, there are two classical algorithms used widely, i.e
Kruskal’s algorithm and Prim’s algorithm. In our project, we
will implement three different parallel algorithms [1], which
are adated from either Kruskal’s algorithm or Prim’s algo-
rithm, to improve the speed of solving MST problems. For
implementation, we plan to use the Apache Spark Python
API. Finally, we will compare the performances of different
methods.

2 Algorithm

2.1 Classical Algorithms

The two most popular algorithms for minimum spanning trees
on a single machine are Kruskal’s algorithm and Prim’s algo-
rithm. Both of them have the same computational complexity
and are relatively simple to implement.

2.1.1 Kruskal’s Algorithm

Basically, Kruskal’s algorithm begins with a sorted list of
edges and adds each edge to the tree if it does not form a
cycle. By the cycle property, we know that if the weight of
an edge is greater than all the other edges in a cycle, then
this edge cannot be part of the MST. Therefore, we only add
edges which are part of the MST.

Using a simple implementation of the disjoint-set data
structure we can achieve a run-time of O(m · logn). If we
use a more sophisticated disjoint-set data structure, then we
can achieve a run-time of O(mα(m,n)) where α is the ex-
tremely slowly growing inverse of the Ackermann function.
However, to achieve this bound, we need to assume that the
edges are already sorted or can be sorted in linear time.

Algorithm 1 Kruskal’s algorithm
Require: All the edges in E are sorted in increasing order by

weight
1: function KRUSKAL(G(V,E))
2: A = Φ

3: for i ∈V do
4: MAKE-SET(i)
5: end for
6: for (u,v) in E do
7: if FIND-SET(u) 6= FIND-SET(v) then
8: A = A∪ (u,v)
9: UNION(u,v)

10: end if
11: end for
12: return A
13: end function

2.1.2 Prim’s Algorithm

Prim’s algorithm finds the minimum weight edge leaving the
current tree and appends this edge to the tree. By the cut
property, we know that the minimum weight edge leaving
any cut is in the MST. Therefore, we add only the edges that
belong to the MST.

If we use a simple binary heap and a priority queue, the
complexity of the algorithm is O(mlogn). However, if we use
the more sophisticated Fibonacci heap, it can be shown that
the run-time is O(m+nlogn) which is asymptotically better
for dense graphs.

2.2 Faster Algorithms

The fastest non-randomized algorithm with known complex-
ity is by Bernard Chazelle that runs in O(mα(m,n)) which
for all practical purposes is linear time. However, it uses a
soft heap and an approximate priority queue and is difficult
to implement. Karger, Klein & Tarjan found a linear time
randomized algorithm which uses only comparison of edge

1

Algorithm 2 Prim’s algorithm
1: function PRIM(G(V,E))
2: A =V0
3: B =V
4: T = {}
5: while B 6= Φ do
6: Find smallest (u,v)∈ E such that u∈ A and v∈ B
7: T = T +(u,v)
8: A = A+ v
9: B = B− v

10: end while
11: return T
12: end function

weights to find the MST. For integer edge weights, the current
fastest algorithm, developed by Fredman and Willard takes
O(m+n) time.

3 Distributed Algorithms and Implementa-
tion Plan in Spark

We will look at three distributed algorithms. Two of them are
based on Kruskal’s algorithm - edge partitioning and vertex
partitioning, and the third, parallel Prim’s is based on Prim’s
algorithm. The basic assumption in all three algorithms is
that the vertices of the graph fit in the memory of a single
machine, but the edges don’t.

3.1 Edge Partitioning Algorithm

Firstly, we should introduce a lemma to help in establishing
the correctness of the algorithms in a distributed setting. That
is, any edge that does not belong to MST of a subgraph con-
taining the edge does not belong to the MST of the original
graph. Based on this lemma, we are inspired to improve the
speed of Kruskal’s algorithm by first eliminating edges par-
allelly and performing Kruskal’s algorithm on the remaining
edges.

Following this scheme, we come up with a divide-and-
conquer algorithm, i.e., to split edges randomly into disjoint
sets and compute local MSTs parallelly first, and then com-
pute a final MST with edges belonging to local MSTs. To
notice that, all distributed machines share a same set of ver-
tices when computing local MSTs.

The random splitting of edges is achieved by a map op-
eration using random function. Then, with groupByKey,
edges with same key are grouped on a single machine. Next,
flatMap is employed with Kruskal’s to obtain an RDD con-
taining only the edges belonging to local MSTs.

Algorithm 3 Edge Partitioning Algorithm
1: function EDGEPARTITION(G(V,E))
2: η =Memory of each machine
3: e = E
4: while |e|> η do
5: l = Θ(|E|

η
)

6: Split e into e1,e2, . . . ,el using a universal hash
function

7: Compute T ∗i =KRUSKAL(G(V,ei)) . In parallel
8: e = ∪iT ∗i
9: end while

10: A =KRUSKAL(G(V,ei))
11: return A
12: end function

3.2 Vertex Partitioning

In the Vertex Partitioning Algorithm, instead of partitioning
edges, we partition vertices. Similar to the Edge Partitioning
Algorithm, we first split vertices randomly into disjoint sets
with equal size. After that, rather than compute local MSTs
for each partition, we consider pairs of these partitions, which
means compute local MSTs for each pair of partitions, to
cover edges that go across partitions. Finally, we compute a
final MST with edges belonging to local MSTs.

The vertices are splited randomly using map operation
with random number generator. It is then broadcasted to all
the machines. Next, we go through all edges on a machine
to figure out their corresponding pairs of partition. Using a
flatMap, each edge is assigned a key corresponding to its
pair of partition. Then, a groupByKey operation collects all
edges belonging to a partition on a single machine. Since
an edge can belong to multiple pairs of partitions, we need
to use distinct function to remove duplicates among edges
belonging to local MSTs.

Algorithm 4 Vertex Partitioning Algorithm
1: function VERTEXPARTITION(G(V,E))
2: Set k
3: Split V into V!,V2, . . . ,Vk using a universal hash func-

tion
4: Ei, j = {(u,v) ∈ E|u,v ∈Vi∪Vj}
5: Gi, j = G(Vi∪Vj,Ei, j)
6: for i, j in k× k do
7: Mi, j =KRUSKAL(Gi, j) . In parallel
8: end for
9: H = G(V,∪i, jMi, j)

10: M =KRUSKAL(H)
11: return M
12: end function

2

3.3 Parallel Prim’s
This algorithm differs from the two aforementioned algorithm
in which it works by building an MST from scratch rather
than eliminating edges that do not belong to the MST. At
the first step, we find the smallest edges leaving every vertex.
Then, we add these edges to the MST and at each subsequent
iteration, we find the smallest edges leaving each connected
component and add them to the MST. The global smallest
edges leaving each connected component can be found by
finding the smallest edges leaving each connected component
on individual machines and then performing a reduce oper-
ation on the local smallest edges to get the global smallest
edges.

We use disjoint set structure to indicate connectednesses
of vertices and broadcast it to all machines. We then perform
a map operation to find the minimum edges in each machine
and do a reduce operation to get the overall minimum edges.
After that, we go through each edge in the list of edges re-
turned by the reduce and perform a union.

Algorithm 5 Parallel Prim’s Algorithm
1: function PARALLELPRIMS(G(V,E))
2: A = DISJOINT EST ()
3: for i ∈V do
4: T = {}
5: A.MAKE-SET(i)
6: end for
7: Broadcast A
8: Ê =List of minimum edges leaving each disjoint set

. In parallel
9: while |Ê|> 0 do

10: for e in Ê do
11: A.UNION(u,v)
12: T = T + e
13: end for
14: Broadcast A
15: Ê =List of minimum edges leaving each disjoint

set . In parallel
16: end while
17: H = G(V,∪i, jMi, j)
18: return T
19: end function

4 Timetable

Oct. 19th Ensure the topic and submit a writeen proposal

Oct. 21st Search for references

Oct. 28th Implement the algorithms by Spark python API

Nov. 4th Write a final report

Nov. 11st Prepare slides for presentation

Nov. 18th Present our project

Dec. 2nd Submit a final report

References

[1] Swaroop Indra Ramaswamy and Rohit Patki. Distributed
minimum spanning trees. Stanford Education CME323
Projects, 2015.

3

	Introduction
	Algorithm
	Classical Algorithms
	Kruskal’s Algorithm
	Prim’s Algorithm

	Faster Algorithms

	Distributed Algorithms and Implementation Plan in Spark
	Edge Partitioning Algorithm
	Vertex Partitioning
	Parallel Prim’s

	Timetable

